| AOTHOR | Gales, Larry |
| :---: | :---: |
| TTTLE | Oser's Guide for Subroutine PRNT3D. Physical |
|  | Processes in Terrestrial and Aquatic Ecosystems, Computer Proqrams and Graphics Capabilities. |
| INSTITUTION | Washington Univ.. Seat+le. Center for Quantitative Science in Forestry, Fisheries and Hildlife. |
| SPONS AGENCY | National Science Foundation, washington, D.C. |
| POE came | Jul 78 |
| Grant | NSF-GZ-29B0: NSF-SED74-17696 |
| NOTE | 32p.: Fot related documents, see se j3j 531-597. Contains broken type in computer printouts. |
| EDFS PRICE | MF01/PC02 Plus Postage. |
| DESCPETORS | *Biology: College Science: *Computer Assisted |
|  | Instruction: *Computer Programs: Ecology; |
|  | Environmental Education: Higher Education; |
|  | Instructional Materials: *Interdisciplinary Approach: |
|  | *Physical Sciences: Science Education: Science |
|  | Instruction |

ABSTRACT
These materials were designed to be used by life science students for instruction in the application of physical theory tc ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer flot displays. The displays include single and multiple $x$ vs $\nabla$ functions, multi-value $x$, $y$ relationships, and density plots which sinulate three-dimensional effects by means of overprinting. The package features one- and two-dimensional interpolation, "zoom-in" capacities, automatic scaling, logarithmic scaling, flexible tilting, and multi-paqe plotting. This module assumes that PRNT3D is already incorporated as a subroutine in an existing program which uses the free-form infut package and follows the conventions outlined in Design Standards for Computer Programs. A more thorough discussion of PRNT3D is contained in its programer's guide. (Author/CS)

[^0]by

## Iarry Gales

This instructional module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems supported by National Science Foundation Training Grant No. GZ-2980

## USER'S GUIDE FOR SUBROUTINE PRNT3D

## Identification

```
PRNT3D - A Subroutine Which Generates Two and Three Dimensional
    Printer Plots
Author - Larry Gales
Date - July 1978, Center for Quantitative Science in Forestry, Fisheries and Wildlife, University of Washington
```



Purpose
PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays include single and multiple $x$ vs. y i functions, multi-value $x, y$ relationships, and density plots which simulate three-dimensional effects by means of overprinting. The package features one- and twowdimensional interpolation, "zoom-in" capabilities, automatic scaling, logarithmic scaling, flexible titling, and multi-page plotting. Each plot fits on a standard $8 \frac{1}{2}$ by 11 inch page with margins of sufficient size to permit inclusion in three ring binders. Multi-page plots are automatically distributed over a number of such $8 \frac{1}{2}$ by 11 -inch pages with sufficient annotation to permit reconstruction of the entire image.
$\cdots \quad$ PRNT3D is built around an NX by NY grid of cells called an
image space. The image space is filled with numeric values from a binary file of $x, y, z$ coordinates which contains data points as follows:

$$
\begin{gathered}
x_{1}, y_{1}, z_{1} \\
x_{2}, y_{2}, z_{2} \\
\vdots \\
x_{n}, y_{n}, z_{n}
\end{gathered}
$$

The $x_{i}, y_{i}$ coordinates of $f_{k}$ each point specify its location in the $x, y$ plane and the $z_{i}$ coordinate i.s interpreted as its height. Each $x, y$ coordinate pair locates an appropriate cell within the NX by NY grid into which the $z$ coordinate value is stored. Multiple $z$ watw mapped to a single cell are either averaged together, or are rera d by the last encountered $z$ value, according to an option so $\because \cdots$ the user.

Once the image space is complete, it is sent to an ouche routine which prints it along with titles and appropriate scaling information. The association between a $z$ value in the image anace and its printed representation is determined as follows. Let ZMIN < ZMAX be two values selected either by the user or by PRNT3D, and let $\Delta_{z}=(Z M A X-Z M I N) / 8$. The $z$ values are divided into 10 levels as follows:

| Level 0: |  | $z \leq$ ZMIN |
| :--- | :--- | :--- |
| Level 1: | ZMIN | $<z \leq$ ZMIN $+\Delta z$ |
| Level 2: | ZMIN $+\Delta z$ | $<z \leq$ ZMIN $+2 \Delta z$ |
| .. . |  | .1 |
| Level 8: | ZMIN $+7 \Delta z<z \leq$ ZMAX |  |
| Level 9: | ZMAX | $<z$ |

Each level is represented by a character or combination of overprinted characters. The user may opt to have the levels represented directly by the single characters blank, $1,2,3,4,5,6,7$, 8 , or 9 or by the relative darkness of overprinted characters. The former is usually preferred for line plots while the latter is preferred for surface plots.

The following example should clarify the preceding diacussion. Consider an image space constructed using the following parameters:
$\mathrm{NX}=5$
$\mathrm{NY}=4$
$\mathrm{XMIN}=-100$ (minimum allowed $x$-value)
$\mathrm{XMAX}=400$ (maximum allowed $x$-value)
$\mathrm{YMIN}=0 \quad$ (minimum allowed $y$-value)
$\mathrm{YMAX}=40$ (maximum allowed $y$-value)
ZMIN $=0$
ZMAX $=80$

This image contains 20 grid cells which are numbered from (1,1) at the lower left corner, which handles $x$ and $y$ values in the ranges: $-100<x \leq 0$, $0<y \leq 10$, to $(5,4)$ at the upper right corner, which handles $x$ and $y$ values in the ranges: $300<x \leq 400,30<y \leq 40$. The $\Delta \mathrm{z}$ value is ( $80-0$ )/8=10, and the $z$ levels are:

| Level $0:$ | $z \leq 0$ |
| :--- | ---: | :--- |
| Level 1: | $0<z \leq 10$ |
| Level 2: | $10<z \leq 20$ |
| Level 3: | $20<z \leq 30$ |
| Level 4: | $30<z \leq 40$ |
| Level 5: | $40<z \leq 50$ |
| Level 6: | $50<z \leq 60$ |
| Level 7: | $60<z \leq 70$ |
| Level 8: | $70<z \leq 80$ |
| Level 9: | $80<z$ |

Consider the following file of $x, y, z$ coordinates:

| Sequence No. | $\underline{x-c o o r d}$ | $y$-coord | $\underline{z-c o o r d}$ | Grid Cell Mapped to |
| :---: | :---: | :---: | :---: | :---: |
| 1 | -50 | 25 | 45 | $(1,3)$ |
| 2 | 150 | 12 | 75 | $(3,2)$ |
| 3 | 350 | 32 | 92 | $(5 ; 4)$ |
| 4 | -90 | 25 | 0 | (1; 3) |
| 5 | 500 | 20 | 36 | --- |

The image space, when filled from the above file, conceptually appears as follows (the actual printed image lacks the full grid lines):


Note that the data file contains five points, but the image space shows only three. This is because (a) PRNT3D ignored point 5 since its $x$ coordinate exceeded $X M A X$, and (b) by default, it averaged the 2 values ( 45 and 0 ) for points 1 and 4 since they were mapped to the same grid cell, ( 1,3 ). The average value, $z=22.5$, is represented by $z$ level 3 , and the other $z$ values, 75 and 92, are represented by $z$ leveis 8 and 9 , respectively. If the image were displayed using overprinting, it would appear as follows:

where grid cell $(3,2)$ contains " W ", " T ", and "-" overprinted, and $(5,4)$ contains "B", "M", "*".

PRNT3D contains several options which partially overcome the limitations of low resolution, sparse data representation, and device dependent printing characteristics, which commonly plague printer plot displays.

The problem of low resolution is handled by the zoom-in and multi-page options. Zoom-in permits a user to blow-up a region of the data into as much detail as is desired by specifying the $x, y$ coordinates of a rectangular window which encloses it. The data in this region are mapped onto the full NX by NY grid - data outside the region are ignored. Normally, a user first views the data set as a whole and then selects windows where more detail is desired.

The multi-page option permits an effective resolution of up to a million picture elements over all or part of the data. Multipaging is controlled by the parameters NX and NY which specify the number of $x$ and $y$ axis cells in the image space. If $N X \leq 60$ and $N Y \leq 45$ the plot is restricted to a single page, otherwise it is automatically distributed over a number of pages. The maximum resolution is $N X=999, \mathrm{NY}=999$.

Sparse data presents a problem in printer plot displays, because it is difficult for a user to perceive the structure of objects which are represented by a few scattered points. PRNT3D contains one- and two-dimensional interpolation or point enrichment options which add equi-spaced, linearly interpolated data points to the points in the original data file. Both types of enwichment require that data sets be organized in special ways. The requirements and details of enrichment are fully described in the appendix.

The problem of device dependence affects the visual quality of density (overprinted) plots because print combinations which are dark on one device may be relatively light on another. PRNT3D permits the user to map any of the 10 z value levels occurring in the data on to any of 10 predefined print combinations by means of an array named ZMAP. If $\operatorname{ZMAP}(i)=j$, where $1 \leq i \leq 10$ and $0 \leq j \leq 9$, then the ith $z$ level will be represented by the print combination normally reserved for level $j$. For example, if the third print combination on one device were actually darker than the seventh, the user could interchange them by setting $\mathrm{ZMAP}(3)=7$ and $\mathrm{ZMAP}(7)=3$. ZMAP can also be used to reduce the number of printed levels and hence sharpen the contrast, to reverse the representation of levels (e.g. by setting $\operatorname{ZMAP}=9,8,7,6,5,4$, $3,2,1,0$ ), or to display rough contour levels (e.g. by setting ZMAP $=$ $0,1,0,1,0,1,0,1,0,1)$.

Input
This write-up assumes that PRNT3D is already incorporated as a subroutine in an existing program which uses the free-form input package
(Gales and Anderson, 1978) and follows the conventions outlired in the Design Standards for Computer Programs (Gales, 1977). It discusses only those plot directives which are assigned by the user through the fxee-form package. For a more thorough discussion of PRNT3D refer to its programmer's guide.

The user assignable variables in PRNT3D are XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX, XRICH, YRICH, DFAULT, OVPRNT, AVE, INT2D, NX, NY, and ZMAP, and are described as follows:

INPUT TABLE

| NAME | TYPE AND DIMENSIONS | RANGE LIMITS | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| XMIN <br> XMAX <br> YMIIN <br> YMAX | Real | $\left(-10^{29}, 10^{29}\right)$ | XMIN, XMAX and YMIN, YMAX define a rectangular window which encloses the data in the image space to be displayed. Data outside the window are not shown. If XMIN $\geq$ XMAX and/or YMIN $\geq$ YMAX the computer igñores them and constructs a window which just encloses all data in the data file. |
| $\begin{aligned} & \text { ZMIN } \\ & \text { ZMAX } \end{aligned}$ | Real | $\left(-10^{29}, 10^{29}\right)$ | ZMIN and ZMAX are the lower and upper bounds for 10 levels which determine the printed representation of $z$ coordinate values in the binary data file. If ZMINZZMAX, the computer ignores them and assigns the lowest and highes $z$ values in the data file to ZMIN and ZMAX, respectively. |


| NAME | TYPE AND DIMENSIONS | RANGE LIMITS | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| XRICH |  | (0, 10 ${ }^{29}$ ) | XRICH and YRICH control the |
|  | Real |  | $\Delta x$ and $\Delta y$ increments used in both one- and |
|  |  |  |  |
|  |  |  | polation (enrichment). <br> If $\mathrm{XRICH}=0$ and/or |
|  |  |  | YRICH $=0$, no enrichment takes place. The |
|  |  |  | ment takes place. The user should note that |
|  |  |  | the values of XRICH |
|  |  |  | and YRICH should becoordinated not only |
|  |  |  |  |
|  |  |  | with the data, but with the size of the window |
|  |  |  | set by XMIN, XMAX, YMIN, YMAX. If XRICH or YRICH |
|  |  |  |  |
|  |  |  | are too small, the enrichment process will |
|  |  |  |  |
|  |  |  | consume too much computer time, whereas large |
|  |  |  | values of XRICH, YRICH will leave gaps. |
|  |  |  |  |
| DFAULT | Real | $\left(-10^{29}, 10^{29}\right)$ | DFAULT is the default value assigned to all cells in the image |
|  |  |  |  |
|  |  |  |  |
|  |  |  | space. DFAULT is |
| OVPRNT | Logical |  | If OVPRNT is true, the $z$ values in each cell |
|  |  | .T. or .F. |  |
|  |  |  | in the image space will be represented by a set of |
|  |  |  |  |
|  |  |  | overprinted characters, so that high 2 values will |
|  |  |  | appear dark(the lowest level is always blank). If OVPRNT |
|  |  |  | is false, then the 2 values will be represented by one of the characters blank, 1 , |
|  |  |  |  |
|  |  |  |  |
| AVE | Logical | .T. or .F. | If AVE is true, then ail 2 values mapped to a single cell in the image space will |
|  |  |  |  |
|  |  |  |  |
|  |  |  | be averaged. If AVE is false, the last $z$ value stored in the ceil takes effect. |
|  |  |  |  |
|  |  |  |  |

\begin{tabular}{|c|c|c|c|}
\hline NAME \& TYPE AND DIMENSIONS \& RANGE LIMITS \& DESCRIPTION <br>
\hline INT2D

:- \& Logical \& .T. or .F. \& If INT2D is true, then two-dimensional interpolation or enrichment will be applied to the binary data file, provided that both XRICH and YRICH are greater than zero. If INT2D is false, then onedimensional interpolation will be applied if both XRICH and YRICH are greater than zero. Note that interpolation can only be applied to data which are correctly organized on the binary data file. <br>

\hline $$
\begin{aligned}
& \mathrm{NX}, \\
& \mathrm{NY}
\end{aligned}
$$ \& Integer \& \[

$$
\begin{aligned}
& 2 \leq|N X| \leq 999 \\
& 2 \leq|N Y| \leq 999
\end{aligned}
$$
\] \& NX and NY are the number of $x$ and $y$ cells in the image space. If $N X \leq 60$ and NY<45, the image is printe $\bar{d}$ on one page, otherwise it is automatically spread over a number of pages. For multi-page plots NX should be an exact multiple of 60 and $N Y$ an exact multiple of 45 . If NX(NY) $<0$, the number of cells is computed as the absolute value of $N X(N Y)$ and the $x(y)$-axis is scaled logarithmically as are the points in the data set. <br>

\hline ZMAP \& Integer (10) \& 0,9

12 \& The ZMAP array maps a given 2 level into one of the 10 predefined print combinations. Normally, the array $\mathrm{ZMAP}=0,1,2,3,4,5,6,7,8,9$ which means that the lowest $z$ level is represented by a blank, the next 2 level either by a "l" or a "-", the next 2 level by a "2" or an " ${ }^{\prime}$ ", ...., the last 2 level by a 9 or the overprinted set " $B$ ", " M ", and "*". <br>
\hline
\end{tabular}

\(\left.$$
\begin{array}{l|c|c|l}\text { NAME } & \text { TYPE AND DIMENSIONS } & \text { RANGE LIMITS } & \text { DESCRIPTION } \\
\hline \begin{array}{l}\text { ZMAP } \\
\text { (cont) }\end{array} & \text { Integer (10) } & 0,9 & \begin{array}{l}\text { However, if the user } \\
\text { sets ZMAP (i) }=\mathrm{j} \text { for }\end{array}
$$ <br>
any i or j then the <br>

ith z level will be\end{array}\right\}\)| represented by the jth |
| :--- |
| print combination. |

## Output

The output for PRNT3D consists of the printed representation of the image space: four lines of text at the top of the plot which serve as a title, $x$ and $y$ axis text labels, $x$ and $y$ numeric labels of the form $\pm N . N N N$, and a legend underneath the plot which specifies the scale factors for the $x, y$, and 2 axes, whether $x$ and $y$ scales are linear (default) or logarithmic, the values for each of the 10 2-axis levels, and the number of points mapped to each 2 level. Since the latter figures are restricted to two digits, values in excess of 99 are represented by -9. For example, if the plot legend were to read

```
SCALE FACTORS = X-AXIS:E+06, Y-AXIS (LOG):E-03, Z-AXIS:E+04
Z0-Z4 = 3.219(17), 3.319(11), ...
Z5-Z9 = 3.719(92), ...
```

then all x-axis numeric labels must be multiplied by $10^{6}$, all y-axis values by $10^{-3}$, and all 2 -level values by $10^{4} ; 17$ points (whose 2 -axis values were $\leq 32190$ ) were mapped to level 0 (blanks), 11 points (whose 2 axis values were in the interval $(32190,33190]$ ) were mapped to 2 level 2, and so on.

As an example, consider the first sample run whose image space contains 8 digits, 1 through 8 , scattered sparsely over the plot. In this case, the four title lines and the $x$ and $y$ axis text labels are absent. Consider the point " 8 " which is located at the bottom middle of the plot. Its $x$ and $y$ axis coordinates are ( $x>2.996, y=1.000$ ) and since the $x$ and $y$ axis scal.e factors are $E+00$ (corresponding to
$\left.10^{\circ}=1\right)$ the true coordinates remain ( $x=3, y=1$ ). More than 99 points were mapped to $z$ level 0 (which always show up as blanks), 1 point each was mapped to 2 levels 1 through 8, and none were mapped to 2 level 9. All scales were linear, so the word "LOG" did not appear in its legend. Restrictions

The one- and two-dimensional enrichment functions should only be used on data which are correctly organized on the binary file of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates.

## Error Messages

PRNT3D issues four types of fatal error messages: range check errors, errors arising from enrichment of faulty input data, errors due to zero width windows, and errors arising from non-positive data values when logarithmic scaling is used. The first type are of the form:
------ ERROR NO. x IN PRNT3D -----
yy...y OUT OF RANGE
yy...y $=$ dd...d
where $x$ is 1,2 , or 3 , yy...y is the name of a variable ( $N X$, NY, or ZMAP) and dd...d is the value of the variable. The second type are of the form:
------ ERROR NO. 4 IN PRNT3D ------
A TRIANGULAR REGION IS MALFORMED
ITS POINTS ARE:
$\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right)$

ERROR NO. 5 in PRNT3D
END OF FILE ENCOUNTERED BEFORE
A TRIANGLE IS COMPLETE

Error number 4 occurs if the three vertex points of a triangle form a single line, and number 5 occurs if the last triangle possessed only one or two vertex points. The third type of messages are of the form:

```
\therefore ------ ERROR NO. x IN PRNT3D -------
    COMPUTED \alpha-AXIS WINDOW IS ZERO WIDTH
    AT \alpha = dd...d
```

where $x$ is 6,7 , or 8 , and $\alpha$ is $X, Y$, or $Z$. These errors occur if the user is letting PRNT3D determine the size of the window (by setting XMIN $\geq$ XMAX and/or YMIN $\geq$ YMAX ) and all the $x$ coordinates are equal or all the $y$ coordinates are equal (for example, if only one point appears in the image space). The last type of error messages are of the form: ERROR NO. x IN PRNT3D ------LOG OF NON POSITIVE $\alpha$ VALUE AT $\alpha$ MIN $=d d \ldots d$
where $x$ is 9 or 10 , and $\alpha$ is $X$ or $Y$.
Sample Runs
The annotated listing on the next few pages illustrates the control cards and input cards for several sample runs. The sample runs show the effects of various plot options applied to a single set of $x$, $y, z$ coordinates on $a$ binary data file.

```
RUNLARGE,CM65000,T50.
-13-
AACEOUNT,9XMO8COO,-------.
COMMENT. ******************************************
COMMENT. * THE FIRST CARD ABDVE IDENTIFIES *
COMMENT. * THE JOB, SPECIFIES THE MEMDRY *
COMMENT. * REQUIREMENTS (55000 OCTAL) AND THE*
COMMENT. * ESTIMATED CENTRAL PROCESSOR TIME *
COMMENT. * IN SECONDS (50 OCTAL). THE SECOND*
COMMENT. * CARD IDENTIFIES THE BUDGET AND *
COMMENT. * PASSWORD.
COMMENT.*****************************************
COMMENT.
&TTACH,BPR3D,ID=BPR 3D.
ATTACH,BFF,ID=BFF.
MNF,L=O,E=1,B=LARGE.
CDMMENT. ******************************************
COMMENT. * BPR3D IS THE FILE CONTAINING THE *
COMMENT. * 3D PRINTER PLOT SUBRDUTINE IN *
COMMENT. * BINARY FORM, BFF IS THE FORMAT *
COMMENT. * FREE INPUT SUBRDUTINE IN BINARY *
COMMENT. * FORM. THE MNF CARD COMPILES THE *
COMMENT. * PRNT3D TEST PRDGRAM AND WRITES *
COMMENT. * THE BINARY PROGRAM TO FILE LARGE. *
COMMENT. ****************************************
COMMENT.
LOAD,LARGE;BPR3D,BFF.
EXECUTE.
COMMENT.*****************************************
COMMENT. * THE LOAD CARD LDADS THE TEST *
COMMENT. * PROGRAM (ON FILE LARGE) INTO MEM- *
CDMMENT. * DRY, ALONG WITH BPR3D AND BFF. *
COMMENT. * THEN CONTROL IS PASSED TO THE TEST*
COMMENT. * PROGRAM, WHICH BEGINS EXECUTION. *
COMMENT. * INPUT IS HANDLED BY BFF, AND *
COMMENT. * OUTPUT IS PLDTTED BY BPR3D. *
CDMMENT. ***************************************
*EOR
```

                    *****PROGRAM GDES HERE*****
    *EOR
1
/***************************** RUN1 **********************************/
1
/ THE FIPST PUN PLDTS EIGHT PDINTS IN THE REGION $1<x<5$ AND
$11<Y<4 . \quad$ THE POINTS ARE NUMBERED 1 THROUGH 8 AND ND
CODRDINATES FOR THE 8 POINTS ARE AS FOLLOWS

| 1 | POINT | $X$ | $Y$ | $Z$ |
| :--- | :---: | :--- | :--- | :--- |
| 1 |  |  |  |  |
| 1 | 1 | 1 | 3 | 1 |
| 1 | 2 | 3 | 4 | 1 |
| 1 | 3 | 1 | 2 | 1 |
| 1 | 4 | 3 | 2.4 | 1 |
|  | 5 | 4.2 | 2.8 | 1 |



```
COORD(3,1)=1, COORD(3,2)=2, COORD(3,3)= 3,
COORD(3,4)=4, }\operatorname{COCRD}(3,5)=5,\quad\operatorname{COORD}(3,6)=6
COORD(3,7)= 7, COORD(3,8)= = ,
```

1
/ the following plot parameters are input
1

```
XRICH=O, YRICH=0,
INTZD =.F.,
OVPRNT = .F., s
```

1
/***************************** RUN2 **********************************,
1
f THE SECOND RUN DOES A DNE-DIMENSION INTERPOLATION BETWEEN
1 SELECTEC POINTS FORMING J TRIANGLES IN THE REGION. THE TRIANGLES
1 formed have the following points as vertices
1
1 TRIANGLE 18 POINTS 1,3, AND 2
1 TRIANGLE 2: POINTS 2:3, AND 4
1 TRIANGLE 3: POINTS 2,4, AND 5
1 TRIANGLE $4:$ POINTS 2,5, AND 6
1 TRIANGLE 5: POINTS 5,6, AND 7
1 TRIANGLE $6:$ POINTS 5,8, AND 7
1 TRIANGLE 7: POINTS 5,4, AND 8
1 TRIANGLE 8: POINTS 4,3, AND 8
/ the default $x, y$, and $z$ coordinates for the points are the same
1 AS FOR RUN le THE FOLLOWING PLOT PARAMETERS ARE INPUT
1
$X R I C H=0.05, \quad Y R I C H=0.05$,
INT2D = .F.,
OVPRNT - .F.g s
1
/ NOTE: THE INTERPOLATION ALGORITHM DEPENDS ON THE ORDERFNG OF THE
/ POINTS IN the data set. the ordering of the points in the data set
/ FDR THIS PARTICULAR RUN IS SUCH THAT NOT ALL TRIANGLES ARE
1 COMPLETED BY THE INTERPOLATION. THUS THE LINES BETWEEN POINTS 1
1 AND 2 AND BETWEEN 2 AND 6 DO NOT APPEAR IN THE PLOT.
1
1

```
                            &*)-15-
I. THE THIR-Q RUN IS A DETAIL DF RUN 2 AND DISPLAYS THE REGION
| DEFINED BY 3 < }X<5\mathrm{ AND l < Y< 3
/ THE FOLLOWING PLOT PARAMETERS ARE INPUT
    INTZD:*F.,
    OVPRNT = .F.,
    XMIN = 3, XMAX = 5,
    YMIN-1, YMAX - 3,
    XRIGH, 0.01, YRICH 0.02, $
l
```



```
/
/ THE FOURTH RUN DISPLAYS A SURFACE WITH INTERPOLATION. THE
/2 COORDINATES FOR POINTS 2, 4, AND 5 ARE RAISED TO A VALUE
/ DF 9. THE REMAINING POINTS HAVE THE DEFAULT Z COORDINATE
/ VALUE OFII.
    COORD(3,2)= 9, COORD(3,4)= 9, COORD(3,5)=9,
|
/ THE FOLLOWING PLOT PARAMETERS ARE INPUT
    XRICH=0.035, YRICH=0.035, INT2D=.T.,
    OVPRNT * .T., $
/
```



```
|
/ THE fIFTH. RUN IS THE SAME AS THE FOURTH RUN WITH REVERSED VIDEO.
/
    COORD(3,2)=9, COORD(3,4)= 9, COORD(3,5)=9,
|
/ THE FOLLOWING PLOT PARAMETERS ARE INPUT --
|
    OVPRNT = .T.,
    XRICH=0.035, YRICH=0.035, INT2D=.To,
    ZMAP= 9,8,7,6,5,4,3,2,1,0, $
/
```



```
    F-INIS=.T., $
|
* EOR
* EOF
```







```
/ AS FOR RUN 1. THE FOLLOWING PLOT PARAMC, ISS ARE INFUf
        XRICH = O.05, YRICH=0.05,
        INT2D : FO.'
        OVPRNT -.F., $
```



ROGRAM - TEST- READY FOR INPUT
! NOTE: THE INTERPDLATION ALGORITHM DEPENOS ON THE DROERING OF THE
POINTS IN THE DATA SET. THE DRDERING OF THE POINTS IN THE DATA SET
/ FORTSHINPARTICULAR RUN IS SUCH THAT NOT ALL TRIANGLES ARE

1
***\#\#************************* RUN
THE THIRD RUN IS A DETAIL OF RUN $\overbrace{\text { R }}$ AND DISPLAYS THE REGION
1 THE FOLLOWING PLOT PARAMETFRS ARE INPUT


22

$23$


ROGRAM - TEST- READY FOR INPUT VALUE OF 1.
$\operatorname{COORD}(3,2)=9, \quad \operatorname{CDORD}(3,4)=9, \quad \operatorname{COORD}(3,5)=9,{ }^{-}$
the following plot parameters are input
$X P I C H=0.035, \quad$ YRICH $=0.035, ~ I N T 2 D=. T ., ~$
OVPRNT $=0.1$


PROGRAM -TEST- READY FOR INPUT

1.000 2.610 $2.288 \quad 2.966 \quad 3.644 \quad 4.322 \quad 5.000$
4.000 Y8y










3.318Y8










I B B B




















1.000 Y
$\begin{array}{llllll}1.000 & 1.610 & 2.238 & 2.966 & 3.644 & 4.322\end{array}$

IRDGRAM -TEST- READY FOR INPUT


## APPENDIX: ENRICHMENT

One dimensional enrichment is applicable only to data sets whose points describe an ordered sequence of line segments, as follows:

$$
\begin{aligned}
& x_{1}, y_{1}, z_{a} \\
& x_{2}, y_{2}, z_{a} \\
& \cdot \quad: \quad \text { Line } 1 \\
& x_{i}, y_{1}, z_{a}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i+1}, y_{i+1}, z_{b} \\
& x_{i+2}, y_{i+2}, z_{b} \quad: \text { Line } 2 \\
& \cdot \\
& x_{j}, \quad y_{j}, z_{b}
\end{aligned}
$$

$$
x_{j+1}, y_{j+1}, z_{c}
$$

$$
x_{j+2}, y_{j+2}, z_{c} \quad: \text { Line } 3
$$

$$
x_{k}, \quad y_{k}, \quad z_{c}
$$

One dimensional enrichment assumes that neighboring pairs of points whose $z$ values are identical are part of the same line, hence it generates a sequence of equi-spaced points to fill in the gap between them. Note that the $z$ values within a line must be absolutely identical; not merely similar, hence they must be set by means of assignment statements and not as the result of floating point computations.

The enrichment algorithm operates as follows. Let

$$
P_{i}=\left(x_{i}, y_{i}, z_{i}\right), P_{i+1}=\left(x_{i+1}, y_{i+1}, z_{i+1}\right), P_{i+2}=\left(x_{i+2}, y_{i+2}, z_{i+2}\right)
$$

be three sequential points in the binary data file where $z_{i}=z_{i+1}=z_{i+2}$.

The enrichment algorithm adds the points

$$
\therefore \quad Q_{j}=\left(x_{i}+j \Delta x_{1}, y_{i}+j \Delta y_{1}, z\right) \text { for } j=1, \ldots, n_{1}
$$

between $P_{i}$ and, $P_{i+1}$, and the points

$$
Q_{k}=\left(x_{i+1}+k \Delta x_{2}, y_{i+1}+k \Delta y_{2}, z\right) \text { for } k=1, \ldots, n_{2}
$$

between $P_{i+1}$ and $P_{i+2}$ where

$$
\begin{aligned}
& z=z_{i}=z_{i+1}=z_{i+2}, \\
& n_{1}=\operatorname{Max}\left[\left|\left(x_{i+1}-x_{i}\right)\right| / \mathrm{XRICH},\left|\left(y_{i+1}-y_{i}\right)\right| / \mathrm{YRICH}\right], \\
& n_{2}=\operatorname{Max}\left[\left|\left(x_{i+2}-x_{i+1}\right)\right| / \mathrm{XRICH},\left|\left(y_{i+2}-y_{i+1}\right)\right| \mathrm{YRICH}\right], \\
& \Delta x_{1}=\left(x_{i+1}-x_{i}\right) / n_{1} \\
& \Delta y_{1}=\left(y_{i+1}-y_{i}\right) / n_{1}, \\
& \Delta x_{2}=\left(x_{i+2}-x_{i+1}\right) / n_{2}, \\
& \Delta y_{2}=\left(y_{i+2}-y_{i+1}\right) / n_{2},
\end{aligned}
$$

and XRICH, YRICH are values specified by the user to control the spacing of enrichment points (the number of points is inversely proportional to the magnitudes of XRICH and YRICH). Both XRICH and YRICH must be specified because the $x$ and $y$ axes of the plot may have radically different scales. If $z_{i}=z_{i+1}$ but $z_{i+1} \neq z_{i+2}$, then enrichment assumes that $P_{i+1}$ terminates a line and $P_{i+2}$ starts a new line, hence enrichment takes place only between $P_{i}$ and $P_{i+1}$. If $z_{i} \neq z_{i+1}$ but $z_{i}=z_{i+2}$, then no enrichment takes place because no neighboring 2 values are identical.

For example, if $X R I C H=10$ and $Y R I C H=1$ and the file of $x, y, z$ coordinates is as follows:

|  | Sequence No. | $x$ Coord | $y$ Coord | 2 Coord |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 8 | 5 | 42.0 |
|  | 2 | 30 | 7 | 42.0 |
|  | 3 | 35 | 4 | 42.0 |
|  | 4 | 50 | 8 | 42.001 |
|  | 5 | 20 | 3 | 42.0 |

then PRNT3D adds a series of linearly interpolated points to the file between points 1 and 2 and 2 and 3 , but not between 3 and 4 or 4 and 5 . . The number of points, and the $\Delta x$ and $\Delta y$ increments for the points added to lines 1-2 and 2-3, are as follows:

$$
\begin{aligned}
& n_{1}=\max (|30-8| / 10,|7-5| / 1)=2 \\
& n_{2}=\max (|35-30| / 10,|4-7| / 1)=3 \\
& \Delta x_{1}=(30-8) / 2=11 \\
& \Delta x_{2}=(35-30) / 3=1.66 \\
& \Delta y_{1}=(7-5) / 2=1 \\
& \Delta y_{2}=(4-7) / 3=-1
\end{aligned}
$$

The set of points added to line 1-2 are:

$$
\begin{aligned}
& \left(x_{1}+\Delta x_{1}, y_{1}+\Delta y_{1}, 2\right)=(8+11,5+1,42)=(19,6,42) \\
& \left(x_{1}+2 \Delta x_{1}, y_{1}+2 \Delta y_{1}, 2\right)=(8+22,5+2,42)=(30,7,42)
\end{aligned}
$$

and the points added to line 2-3 are:

$$
\begin{aligned}
& \left(\mathrm{x}_{2}+\Delta \mathrm{x}_{2}, \mathrm{y}_{2}+\Delta \mathrm{y}_{2}, \mathrm{z}\right)=(30+1.66,7-1,42)=(31.66,6,42) \\
& \left(\mathrm{x}_{2}+2 \Delta \mathrm{x}_{2}, \mathrm{y}_{2}+2 \Delta \mathrm{y}_{2}, \mathrm{z}\right)=(30+3.32,7-2,42)=(33.32,5.42) \\
& \left(\mathrm{x}_{2}+3 \Delta \mathrm{x}_{2}, \mathrm{y}_{2}+3 \Delta \mathrm{y}_{2}, \mathrm{z}\right)=(30+4.48,7-3,42)=(34.48,4,42)
\end{aligned}
$$

Two-dimensional enrichment is applicable only to data files which are organized in a special way; namely, the data points in a file must form a set of triangles in the $x, y$ plane. Consider the following region .which is divided into four contiguous triangles labeled $T_{1}, \ldots, \bar{T}_{4}$ whose vertex points are labeled $P_{1}, \ldots, P_{5}$ :


Each triangle is defined by three sets of $x, y, z$ coordinates and the data file must be organized as follows:

$$
\begin{array}{ll}
P_{1}: & x_{1}, y_{1}, z_{1} \\
P_{2}: & x_{2}, y_{2}, z_{2} \\
P_{5}: & x_{5}, y_{5}, z_{5}
\end{array} \quad: T_{1}
$$

$$
\begin{array}{ll}
P_{2}: & x_{2}, y_{2}, z_{2} \\
P_{3}: & x_{3}, y_{3}, z_{3} \\
P_{5}: & x_{5}, y_{5}, z_{5}
\end{array} \quad T_{2}
$$

$$
\begin{aligned}
& P_{3}: x_{3}, y_{3}, z_{3} \\
& P_{4}: x_{4}, y_{4}, z_{4} \\
& P_{5}: x_{5}, y_{5}, z_{5}
\end{aligned}
$$

$$
\begin{array}{ll}
P_{4}: & x_{4}, y_{4}, z_{4} \\
P_{1}: & x_{1}, y_{1}, z_{1} \\
P_{5}: & x_{5}, y_{5}, z_{5}
\end{array} \quad: T_{4}
$$

Note that each point occurs at least twice in the data file. Enrichment fits a triangular plane through the $z$ coordinates of all three points in each triangle. The distances between points in this plane are controlled by the same parameters XRICH and YRICH as are used in one-dimensional enrichment. This form of enrichment or interpolation is particularly suitable for displaying the solutions to finite element formulations.

References

Gáts, L.E. 1977. Design standards for computer programs. Center for


Quantitative Science in Forestry, Fisheries, and Wildife, University of Washington, Seattle, Washington.

Gales, L.E. and L. Anderson. 1978. User's guide for subroutine FFORM: a formal free input system. Center for Quantitative Science in Forestry, Fisheries, and Wildife, University of Washington, Seattle, Washington.



[^0]:    ***********************************************************************
    *
    Reproductions supplied by EDRS are the best that can be made

